The Verge Stated It's Technologically Impressive
Abbie Cousins 于 1 周之前 修改了此页面


Announced in 2016, Gym is an open-source Python library created to help with the development of reinforcement knowing algorithms. It aimed to standardize how environments are specified in AI research study, making published research more quickly reproducible [24] [144] while providing users with a simple interface for engaging with these environments. In 2022, new developments of Gym have actually been transferred to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for support learning (RL) research study on computer game [147] using RL algorithms and research study generalization. Prior RL research study focused mainly on enhancing representatives to fix single jobs. Gym Retro provides the capability to generalize in between games with similar principles but different looks.

RoboSumo

Released in 2017, disgaeawiki.info RoboSumo is a virtual world where humanoid metalearning robot agents initially do not have knowledge of how to even stroll, however are offered the objectives of finding out to move and to press the opposing representative out of the ring. [148] Through this adversarial knowing process, the agents find out how to adjust to changing conditions. When a representative is then removed from this virtual environment and placed in a brand-new virtual environment with high winds, the representative braces to remain upright, suggesting it had discovered how to balance in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors between agents could develop an intelligence "arms race" that might increase an agent's capability to function even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a team of 5 OpenAI-curated bots utilized in the competitive five-on-five computer game Dota 2, that discover to play against human players at a high ability level completely through experimental algorithms. Before becoming a team of 5, the first public presentation took place at The International 2017, the yearly premiere championship tournament for the video game, where Dendi, a professional Ukrainian player, lost against a bot in a live individually matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually discovered by playing against itself for 2 weeks of actual time, and that the knowing software was a step in the instructions of creating software that can handle complex jobs like a surgeon. [152] [153] The system utilizes a kind of reinforcement knowing, as the bots discover with time by playing against themselves numerous times a day for months, and are rewarded for actions such as killing an enemy and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a full group of 5, and they were able to beat groups of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibition matches against expert players, but ended up losing both games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the ruling world champs of the video game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' last public appearance came later that month, where they played in 42,729 overall games in a four-day open online competitors, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the difficulties of AI systems in multiplayer online battle arena (MOBA) games and how OpenAI Five has actually shown using deep support learning (DRL) representatives to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses device discovering to train a Shadow Hand, a human-like robot hand, to control physical items. [167] It discovers totally in simulation using the same RL algorithms and training code as OpenAI Five. OpenAI tackled the things orientation problem by utilizing domain randomization, a simulation approach which exposes the learner to a range of experiences instead of trying to fit to truth. The set-up for Dactyl, aside from having motion tracking video cameras, also has RGB video cameras to permit the robotic to control an approximate item by seeing it. In 2018, OpenAI revealed that the system had the ability to control a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could solve a Rubik's Cube. The robot had the ability to resolve the puzzle 60% of the time. Objects like the Rubik's Cube present intricate physics that is harder to model. OpenAI did this by enhancing the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation technique of creating gradually harder environments. ADR differs from manual domain randomization by not needing a human to specify randomization ranges. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing brand-new AI designs established by OpenAI" to let designers contact it for "any English language AI job". [170] [171]
Text generation

The company has actually popularized generative pretrained transformers (GPT). [172]
OpenAI's initial GPT design ("GPT-1")

The initial paper on generative pre-training of a transformer-based language model was composed by Alec Radford and his associates, and published in preprint on OpenAI's website on June 11, 2018. [173] It revealed how a generative design of language might obtain world knowledge and procedure long-range reliances by pre-training on a diverse corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language design and the follower to OpenAI's initial GPT model ("GPT-1"). GPT-2 was revealed in February 2019, with just restricted demonstrative versions at first launched to the general public. The full version of GPT-2 was not immediately launched due to concern about prospective abuse, consisting of applications for composing phony news. [174] Some professionals revealed uncertainty that GPT-2 presented a significant risk.

In action to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to identify "neural fake news". [175] Other scientists, such as Jeremy Howard, alerted of "the technology to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be impossible to filter". [176] In November 2019, OpenAI released the total version of the GPT-2 language design. [177] Several sites host interactive demonstrations of various instances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue unsupervised language models to be general-purpose students, highlighted by GPT-2 attaining state-of-the-art accuracy and perplexity on 7 of 8 zero-shot jobs (i.e. the model was not additional trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain concerns encoding vocabulary with word tokens by using byte pair encoding. This permits representing any string of characters by encoding both private characters and [forum.batman.gainedge.org](https://forum.batman.gainedge.org/index.php?action=profile